

This course will run the two units, 1 and 2, concurrently. The student Semester 1 grade will therefore be an estimate.

Term	Week	Topic and key teaching points	Syllabus content	Pre reading resources	Assessment
1	2	 Intro to EES Intro to Investigations Scientific Reports Earth's differentiation Evidence for this theory 	Earth has internally differentiated into a layered structure: a solid metallic inner core, a liquid metallic outer core and a silicate mantle and crust; study of seismic waves and meteorites provides evidence for this theory identify the following sedimentary rocks from physical	Pg 1-21	Task 1: - Density
		Seismic wavesMeteorite composition and structure	samples, diagrams and photographs – conglomerate, BIF breccia, sandstone, limestone, siltstone, shale, mudstone	. 8 2 22	conduct
1	3	 Atmosphere and Water were derived from? Current theories – emergence of life 	the atmosphere was derived from volcanic outgassing during cooling and differentiation of Earth, and its composition has been significantly modified by the actions of photosynthesizing organisms	Pg 21-26	Task 1: Density Validation – 2%
			the modern atmosphere has a layered structure characterized by changes in temp: the troposphere, stratosphere, mesosphere and thermosphere		
			current theories state that life emerged under anoxic atmospheric conditions in an aqueous mixture of inorganic compounds, either in a shallow water setting as a result of a lightning strike or in an ocean floor setting due to hydrothermal activity		

1	4	 Relative geological timescale Relative dating - Index fossils Stratigraphic Principles Fossil evidence for life first appeared on Earth 	 a relative geological timescale can be constructed using stratigraphic principles, including original horizontality, faunal succession, superposition, cross-cutting relationships, inclusions, unconformities and correlation fossil evidence indicates that life first appeared on Earth approximately 4 billion years ago. Index fossils enable correlation of rock strata for relative dating 	Pg 28 - 43 + Internet	
1	5	Absolute Dating using radioisotopes	 precise dates can be assigned to points on the relative geological timescale using data derived from the decay of radioisotopes in rocks and minerals; this establishes an absolute timescale and places the age of the Earth at approximately 4.5 billion years 	Pg 43 - 55	Task 2:Test – Formation of Earth – 5%
1	6	Rock CycleTypes of rocksProcesses	rocks are composed of one or more minerals and are formed through igneous, sedimentary and metamorphic processes as part of the rock cycle	Pg 60-61	Cottesloe Field trip: Sedimentary rocks, structures 11 th Mar Friday Mass extinctions – hand task sheet
1	7	Sedimentary rocksClassificationComposition,Texture	some sedimentary rocks can be identified according to their composition and texture, including conglomerate, breccia, sandstone, limestone, siltstone, shale, mudstone	Pg 89-97	Task 3: Validation Field Trip 8%

				1	,
	8	 Sedimentary Structures Compilation of field data and research reports 	 simple sedimentary structures are used as evidence of past processes and are related to depositional environments, including the use of <i>crossbedding</i>, <i>graded</i> <i>bedding</i> and <i>mud cracks</i> 	Pg 98 - 101	
1	9	 Characteristics of past environments and communities Principle of Uniformitarianism 	 observation of present-day processes can be used to infer past events and processes by applying the Principle of Uniformitarianism Sediment layers, Peat bogs, Coral bleaching, sand-dunes, sea level rising 	Pg 401-406 (EEES)	Task 4: Validation - Mass extinctions 5%
1	10	 Diversification and proliferation of living organisms - Cambrian period Catastrophic collapse of ecosystems – mass extinction event end of Cretaceous period 	 diversification and proliferation of living organisms over time (including increases in marine animals in the Cambrian period), and the catastrophic collapse of ecosystems (including the mass extinction event at the end of the Cretaceous period) inferred from fossil record the characteristics of past environments and communities (including presence of water, nature of the substrate, organism assemblages) can be inferred from the sequence and internal textures of sedimentary rocks and enclosed fossils, including banded iron formations and Ediacara fauna 	Pg 391-401 (EEES)	
2	1	 Minerals properties Moh's hardness 	 minerals can be characterised by their colour, streak, lustre, transparency, cleavage, fracture, hardness (Moh's scale), magnetism, density 	Pg 68 - 87	Task 5: Conduct Soil Investigation

2	2	Hydrosphere	 water is present on the surface of Earth as a result of volcanic outgassing and impact by icy bodies from space; water occurs in three phases (solid, liquid, gas) on Earth's surface the water cycle is an important component of Earth system processes 		Task 6: Test: Rocks, and Minerals ID + Past Environments 5%
2	3	 Soil formation and composition Weathering 	 soil formation requires interaction between atmospheric, geological, hydrological and biotic processes; soil is composed of rock and mineral particles, organic material, water, gases and living organisms in any one location, the characteristics (including temperature, surface water, substrate, organisms, available light) and interactions of the atmosphere, geosphere, hydrosphere and biosphere, give rise to unique and dynamic communities 	Pg 114-136	Task 5: Validation - Soils 6%
2	4	Case Study – Water Catch up			
2	5-6	Review			
2	7-8	Exam			Task 7: Exam – Unit 1 15%

			SEMESTER 2		
2	9	Energy Rocks: basalt, dolerite, gabbro, andesite, diorite, rhyolite, pegmatite, granite, pumice, tuff and obsidian	 energy is neither created nor destroyed, but can be transformed from one form to another (for example, kinetic, gravitational, heat, light) and transferred between objects processes within and between Earth systems require energy that originates either from the Sun or the interior of Earth 	Energy - Internet reading Pg 138 - 148	Task 8: conduct Impact of surface Albedo Investigation Task 9: Research - Earth's Climate System Handout
2	10	Earth Heat Budgets Greenhouse Effect	most of the thermal radiation emitted from Earth's surface passes back out into space, but some is reflected or scattered by greenhouse gases toward Earth; this additional surface warming produces a phenomenon known as the naturally occurring Greenhouse Effect	Research Internet	Task 8: Validation Albedo 6%
3	1	Transfer of solar energy to Earth's surface Albedo	 the net transfer of solar energy to Earth's surface is influenced by its passage through the atmosphere, including impeded transfer of ultraviolet radiation to Earth's surface due to its interaction with atmospheric ozone, and by the physical characteristics of Earth's surface, including albedo 	Pg 138 - 153	Task 9: Presentation Earth Climate System - 5%

3	2	 Atmosphere and Atmospheric circulation Weather and Climate Movement of atmospheric air 	the movement of atmospheric air masses due to heating and cooling, and Earth's rotation and revolution, cause systematic atmospheric circulation	Pg 153 – 155 Internet
3	3	Global ocean conveyer model	 the behaviour of the global oceans as a heat sink, and Earth's rotation and revolution, cause systematic ocean currents; these are described by the global ocean conveyer model 	Pg 155 - 161
3	2	El Niño and La NiñaLeeuwinAustralian climate	 the interaction between Earth's atmosphere and oceans changes over time and can result in phenomena, including El Niño and La Niña 	Pg 186 - 200
3	3 - 4	 Plate tectonic due to Earth's heat and gravitational energy Reconsidering Convection Cells (Read off internet) 	 transfers and transformations of heat and gravitational energy in Earth's interior drive the movement of tectonic plates through processes, including mantle convection, plume formation and slab sinking 	Pg 104 - 111

3	5 - 6	 Igneous rock formation processes Mapping 	igneous processes form different igneous rocks which can be identified based on texture and mineralogy, including basalt, dolerite, gabbro, andesite, diorite, rhyolite, pegmatite, granite, pumice, tuff and obsidian	Pg 164 - 175	
3	7	 Ecology and biodiversity Energy is stored, transferred/transformed energy and matter flow through the biotic and abiotic components of an ecosystem 	energy is stored, transferred and transformed in the carbon cycle; biological elements, including living and dead organisms, store energy over relatively short time scales, and geological components store energy for extended periods	Pg 175 - 184	Task 10: Test – Igneous Rocks and Plate Tectonics
3	8	 Biogeochemical cycling of matter, Carbon cycle 	biogeochemical cycling of matter - nitrogen, involves the transfer and transformation of energy between the biosphere, geosphere, atmosphere and hydrosphere thermal/light energy from the Sun drives important Earth processes - evaporation and photosynthesis	Internet Pg 357-359, 362-382 (EEES)	
3	9	Nitrogen cycle Hydrological cycle	biogeochemical cycling of matter - nitrogen, involves the transfer and transformation of energy between the biosphere, geosphere, atmosphere and hydrosphere thermal/light energy from the Sun drives important Earth processes - evaporation and photosynthesis	Internet Pg 357-359, 362-382 (EEES)	Task 11: John Forest – Field Trip 16 th Sept

3	10	 Photosynthesis 	photosynthesis is the principal mechanism for the	Task 11: Validation
		human activities influence	transformation of energy from the Sun into energy forms	– John Forest
		this flow	that are useful for living things	
4	1 - 2	Western Australian Rock	energy and matter flow through the biotic and abiotic	Task 12: Test –
		Lobster case study	components of an ecosystem, and human activities	Earth's Energy and
			influence this flow; applied to a Western Australian case	Cycles 5%
			study	
4	3 - 5	Revision		
4	6 - 7	Exam		Task 13: Exam:
				Unit 1 & Unit 2 –
				25%
4	8	Exam Feedback		